NEW REACTIONS OF SULPHUR DICHLORIDE WITH OLD FINES

G.A.Tolstikov*, B.M.Lerman, L.I.Umanskaya
Institute of Chemistry, USSR Academy of Sciences,
Bashkirian Branch, Ufa, USSR
Yu.T.Struchkov*, A.A.Espenbetov, A.L.Yanovsky
Institute of Organoelemental Compounds, USSR Academy
of Sciences, Moscow, USSR

Summary. The interaction between SCl₂ and adamantylideneadamantane produces epithiccompounds 2 and 3 or polychloroadamantylideneadamantanes 4-7 depending upon conditions. The structure of 3 was determined by X-ray analysis.

We wish to report here a new reaction between sulphur dichloride and sterically hindered olefines, leading to epithiccompounds. Thus, the reaction of SCl₂ with adamantylideneadamantane (1) in chloroformal solution (100-fold excess of the solvent) with molar ratio of 1 to SCl₂ 1:1.25 by addition of SCl₂ within 5 min at room temperature led to thiiran 2 in yield of 80%, m.p. 131-132° (EtOH); m/e 300 (M⁺); σ (CDCl₃) 1.92 (28H, CH,CH₂). In CH₂Cl₂ as a solvent the reaction between SCl₂ and 1, the time of adding of SCl₂ being 80 min at 0°, gave quantitatively 4e-chloro-2,2'-epithic-2-(2'-adamantyl)adamantane 2, m.p. 149-151° (EtOH); m/e 334 (M⁺); σ (CDCl₃) 1.92 (26H, CH,CH₂), 4.57 (1H, CHCl). The latter was obtained also as the main product (76% yield) together with 2 in CHCl₃, containing traces of acid after drying upon P₂O₅.

The position of epithiccycle between two adamantyl nuclei, the endo-position of chlorine atom regarding to the atom of sulphur and its e-configuration with respect to the 2,4-substituted cyclohexane ring follow from the X-ray analysis data.

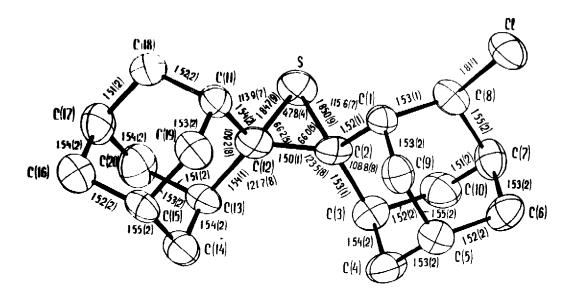


Figure. Bond lengths and some bond angles for 3.

Crystals are monoclinic: at 20° a=18.524(3), b=7.1455(7), c=12.875(2)Å, β =100.49(1)°, V=1675.7(7)Å³, z=4, d_{calc} =1.33 g/cm³, space group P 2₁/c. The structure was solved by the direct method and refined by anisotropic (isotropic for H-atom) least squares procedure, R=0.0804.

The molecular structure of 3 with bond lengths and selected bond angles is shown in the Figure. Bond lengths and angles are unexceptional. The length of the thiiran C-C bond of 1.50(1)Å is in a good agreement with the values found earlier in thiiran derivatives (these values fall in the interval 1.468-1.550 Å)¹, and also with the C-C bond length of 1.492 Å obtained in the ab initio calculation of the thiiran molecule².

We suggest that the formation of compounds 2 and 3 occurs via mechanism, involving intermediacy of sulphurane 8, followed by loss of Cl or HCl depending upon conditions. The cation 9 obtained transformes into thiolate, intramolecular cyclization of which leads to compound 2. The intermediate 10 undergoes itself intramolecular addition to yield 3, but with excess of SCl₂ it gives rise to sulphonic salt 11, which decomposes to give chloride 4.

The $\underline{10} \longrightarrow \underline{4}$ transformation is analogous to the one described for $\underline{4}$, which was obtained by reaction of $\underline{1}$ with 2 eqv. of PhSCl³. We include sulphurane $\underline{8}$ as an intermediate instead of thiiranium salt on the ground of recent works by Zefirov, Smlt, Bodrikov and Krimer⁴.

The opening of thirran ring in compounds 2 and 3 with nucleophilic or electrophilic reagents resulted only in products of desulphurization. Thus, the treatment of thirranechloride 3 by LiAlH_4 in ether gave chloride 4. The latter was obtained also by reaction of 3 with excess of hydrogen chloride in ether at -20° . The desulphurization of both thirran 2 and thirranechloride 3 was achieved by action of excess of CH_3J (16 hr, 20°) resulting in the formation of compounds 1 or 4, respectively.

The treatment of compound 1 with excess of SCl₂ led to its chlorination. Even under equimolar conditions about 50% of chloride 4 was formed together with compound 3 as a consequence of temporary excess of SCl₂ in reaction medium when SCl₂ was added to 1 within a few minutes. The increase of percentage of SCl₂ resulted in accumulation of chlorides 5-7 in a ratio, dependent on the excess of SCl₂. The maximum content of dichloride 5 in the mixture (56% yield) being up to 80% was reached by using 5-fold excess of SCl₂ added for 1.3 hr at 0°; the same percentage of trichloride 6 was obtained when molar ratio of 1 to SCl₂ was 1:7. Chromatographic fractionation of the mixture of 5 and 6 (SiO₂, hexane) gave 4e,4'e-dichloroadamantylideneadamantane 5, m.p. 123-125°; m/e 336 (M⁺); 8 (CDCl₃) 4.16 (2H, CHCl), 2.86 (2H, CH₂CHC=C), 2.96 (2H, CHClCHC=C) and 4e,4'e,8a-trichloroadamantylideneadamantane 6, m.p. 132-134°; m/e 371 (M⁺); 8 (CDCl₃) 4.15 (2H, CHCl), 4.02 (1H, CHCl), 2.86 (1H, CH₂CHC=C), 2.96 (3H,

CHClCHC=C). The mixtures of chlorides $\underline{5}$ and $\underline{6}$ were obtained also in reactions of compounds $\underline{2}$ - $\underline{4}$ with excess of SCl₂.

When compound 1 was treated with 15 moles of SCl₂ for 48 hr at 20°, 4e,4'e,8a,8'a-tetrachloroadamantylideneadamantane 7 was obtained in quantitative yield,⁵ m.p. 198-202° (EtOH); m/e 404 (M⁺); 5 (CDCl₃) 4.06 (2H, CHCl), 3.96 (2H, CHCl), 2.96 (4H, CHClCHC=C).

The polychlorination of $\underline{1}$ by means of excess of SCl_2 proceeds presumably via stages of subsequent addition of SCl_2 to double bonds of mono-, di- and trichlorides obtained with further transformations such as were shown above for 4.

REFERENCES AND NOTES

- 1. J.Bolster, R.M.Kellogg, E.W.Meijer, H.Wynberg, Tetrahedron Letters, 285 (1979).
- 2. a. G.L.Cunningham, A.W.Boyd, R.J.Myers, W.D.Gwinu, J.Chem.Phys., 19, 676 (1951);
 b. R.B.Bates, R.A.Grady, T.C.Sneath, J.Org.Chem., 37, 2145 (1972);
 c. A.Mugnoli, M.Simonetta, Acta Crystallogr., <u>B32</u>, 1762 (1976).
- 3. M.M.Rohmer, B.Koos, J.Amer.Chem.Soc., 97, 2025 (1975).
- 4. N.S.Zefirov, W.A.Smit, I.V.Bodrikov, M.Z.Krimer, Dokl.Akad.Nauk SSSR, 240, 858 (1978).
- 5. The satisfactory data from elemental analysis have been obtained for all the compounds involved.

(Received in UK 4 August 1980)